расширенный поиск

Книга: Прикладное машинное обучение с помощью Scikit-Learn и TensorFlow

концепции, инструменты и техники для создания интеллектуальных систем

Автор: Жерон О.
Издательство: Диалектика
Вес: 1.230 кг.
Год издания: 2018
Формат: 70х100/16
Страниц: 688 Переплет: Твердый переплет
Цена: 2 125 руб.
В КОРЗИНУ товар в наличии
отгрузка: 18.10

"Эта книга — замечательное введение в теорию и практику решения задач с помощью нейронных сетей. Она охватывает ключевые моменты, необходимые для построения эффективных приложений, а также обеспечивает достаточную основу для понимания результатов новых исследований по мере их появления. Я рекомендую эту книгу всем, кто заинтересован в освоении практического машинного обучения."
— Пит Уорден, технический руководитель направления TensorFlow

Благодаря серии недавних достижений глубокое обучение значительно усилило всю область машинного обучения. В наше время даже программисты, почти ничего не знающие об этой технологии, могут использовать простые и эффективные инструменты для реализации программ, которые способны обучаться на основе данных. В настоящем практическом руководстве показано, что и как следует делать.

За счет применения конкретных примеров, минимума теории и двух фреймворков Python производственного уровня — Scikit-Learn и TensorFlow — автор книги Орельен Жерон поможет вам получить интуитивное представление о концепциях и инструментах, предназначенных для построения интеллектуальных систем. Вы узнаете о ряде приемов, начав с простой линейной регрессии и постепенно добравшись до глубоких нейронных сетей. Учитывая наличие в каждой главе упражнений, призванных закрепить то, чему вы научились, для начала работы нужен лишь опыт программирования.

  • Исследуйте область машинного обучения, особенно нейронные сети
  • Используйте Scikit-Learn для отслеживания проекта машинного обучения от начала до конца
  • Исследуйте некоторые обучающие модели, включая методы опорных векторов, деревья принятия решений, случайные леса и ансамблевые методы
  • Применяйте библиотеку TensorFlow для построения и обучения нейронных сетей
  • Исследуйте архитектуры нейронных сетей, включая сверточные сети, рекуррентные сети и глубокое обучение с подкреплением
  • Освойте приемы для обучения и масштабирования глубоких нейронных сетей
  • Используйте практические примеры кода, не овладевая чрезмерно теорией машинного обучения или деталями алгоритмов

Посмотреть все товары по теме: Neural-network